Abstract

SH residues on the rabbit intestinal brush-border membrane Na +/phosphate cotransporter were examined using a variety of SH specific reagents, proteolytic digestion and HPLC separation of SH-labeled cotransporter, and partial reaction assays. Of the seven SH-containing peptide fragments on the non-denatured non-reduced cotransporter six peptides were labeled: five SH-containing peptides were labeled with acrylodan or IAF (iodoacetamidofluorescein) and three peptides were labeled with IAEDANS. One SH-containing peptide was labeled with IAEDANS or fluorescein maleimide only. Selective SH labeling conditions employing acrylodan and IAEDANS were used to identify the environments of these SH-containing peptides in the native cotransporter. The nature of SH reagent-induced inhibition of Na +-dependent phosphate uptake was examined using substrate-induced conformational changes, and substrate-induced changes in IAEDANS and acrylodan fluorescence of the SH-labeled Na +/phosphate cotransporter. The results indicate that five of the SH-labeled peptides sense the Na +-induced conformational change, three peptides sense the Na + + difluorophosphate-induced conformational change, and one peptide senses only the Na + + monofluorophosphate-induced conformational change. Five of the SH-labeled peptides are passive participants in the substrate-induced conformational changes with only SH 51 involved in cotransporter function. Alkylation of SH 51 resulted in a cotransporter conformation which differed from the substrate-mediated conformations and was characterized by increased monofluorophosphate sensitivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.