Abstract

Abstract The relationship between structural, chemical and mechanical properties of nanocrystalline TiC/amorphous C (TiC/a:C) thin films was studied. Thin films were deposited by DC magnetron sputtering on oxidized silicon (Si/SiO2) substrates in argon at 25 °C and 0.25 Pa. The input power of the carbon target was kept at constant value of 150 W while the input power of the titanium target was varied between 15 and 50 W. It was found that all thin films consist of a few nanosized columnar TiC crystallites embedded in carbon matrix. The average size of TiC crystallites and the thickness of the carbon matrix have been found to correlate with Ti content in the films. The mechanical properties of the films have been strictly dependent on their structure. The highest values of the nanohardness (∼66 GPa) and Young's modulus (∼401 GPa) were observed for the film with the highest TiC content which was prepared at the largest input power of Ti target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call