Abstract

Nanocrystalline aluminum nitride (AlN) thin films were deposited on two types of metallic seed layers on silicon substrates, (111) textured Pt and (110) Mo, by reactive DC magnetron sputtering at low temperature (200 °C). Both textured films of Pt and Mo promote nucleation, thereby improving the crystallinity and epitaxial growth condition for AlN thin films. The deposited films were examined by X‐ray diffraction, scanning electron microscopy and atomic force microscopy techniques. The results indicated that the preferred orientation of crystallites greatly depends upon the kinetic energy of the sputtered species (target power) and seed layers used. Furthermore, AlN thin films with c‐axis perpendicular to the substrate grew on both types of metal electrodes at all power levels larger than 100 W. By comparing the structural properties and compressive stresses at perfect c‐axis orientation conditions, it is evident that AlN films deposited on (110) oriented Mo substrates exhibited superior properties as compared with Pt/Ti seed layers. Furthermore, less values of compressive stresses (−3 GPa) as compared with Pt/Ti substrates (−7.08 GPa) make Mo preferentially better candidate to be employed in the field of suspended Micro/Nano ‐ electromechanical systems (MEMS/NEMS) for piezoelectric devices. Copyright © 2017 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.