Abstract
Abstract Responses of the atmospheric circulation to a doubling of CO2 are examined in a global climate model, focusing on the circulation on both dry and moist isentropes. The isentropic circulations are reconstructed using the statistical transformed Eulerian mean (STEM), which approximates the isentropic flow from the Eulerian-mean and second-order moments. This approach also makes it possible to decompose the changes in the circulation into changes in zonal mean and eddy statistics. It is found that, as a consequence of CO2 doubling, the dry isentropic circulation weakens across all latitudes. The weaker circulation in the tropics is a result of the reduction in mean meridional circulation while the reduction in eddy sensible heat flux largely contributes to the slowdown of the circulation in the midlatitudes. The heat transport on dry isentropes, however, increases in the tropics because of the increase in dry effective stratification whereas it decreases in the extratropics following the reduction in eddy sensible heat transport. Distinct features are found on moist isentropes. In the tropics, the circulation weakens, but without much change in heat transport. The extratropical circulation shifts poleward with an intensification (weakening) on the poleward (equatorward) flank, primarily because of the change in eddy latent heat transport. The total heat transport in the midlatitudes also shows a poleward shift but is of smaller magnitude. The differences between the dry and moist circulations reveal that in a warming world the increase in midlatitude eddy moisture transport is associated with an increase in warm moist air exported from the subtropics into the midlatitude storm tracks.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have