Abstract

Background: Studies examining the physiological consequences associated with deficits in energy availability (EA) for male athletes are sparse.Purpose: To examine male athlete triad components; low energy availability (LEA) with or without an eating disorder risk (ED), reproductive hormone [testosterone (T)], and bone mineral density (BMD) in endurance-trained male athletes during different training periods.Methods: A cross-sectional design with 14 participants (age: 26.4 ± 4.2 years; weight: 70.6 ± 6.4 kg; height: 179.5 ± 4.3 cm; BMI: 21.9 ± 1.8 kg/m2) were recruited from the local community. Two separate training weeks [low (LV) and high (HV) training volumes] were used to collect the following: 7-day dietary and exercise logs, and blood concentration of T. Anthropometric measurements was taken prior to data collection. A one-time BMD measure (after the training weeks) and VO2max-HR regressions were utilized to calculate EEE.Results: Overall, EA presented as 27.6 ± 10.7 kcal/kgFFM·d-1 with 35% (n = 5) of participants demonstrating increased risk for ED. Examining male triad components, 64.3% presented with LEA (≤ 30 kcal/kgFFM·d-1) while participants presented with T (1780.6 ± 1672.6 ng/dl) and BMD (1.31 ±.09 g/cm2) within normal reference ranges. No differences were found across the 2 training weeks for EI, with slight differences for EA and EEE. Twenty-five participants (89.3%) under-ingested CHO across both weeks, with no differences between weeks.Conclusion: Majority of endurance-trained male athletes presented with one compromised component of the triad (LEA with or without ED risk); however, long-term negative effects on T and BMD were not demonstrated. Over 60% of the participants presented with an EA ≤ 30 kcal/kgFFM·d-1, along with almost 90% not meeting CHO needs. These results suggest male endurance-trained athletes may be at risk to negative health outcomes similar to mechanistic behaviors related to EA with or without ED in female athletes.

Highlights

  • Examination of low energy availability, defined as

  • Our results yielded an average energy availability (EA) of 27.6 kcal/kg FFM·d−1, similar to the results reported by Hooper et al [7], which examined nine long-distance runners who presented with exercise-hypogonadal male condition eliciting EA levels of (27.2 ± 12.7 kcal/kg FFM·d−1)

  • We found an increase in EEE during the high volume (HV) training week, while energy intake (EI) remained stable between the weeks

Read more

Summary

Introduction

Examination of low energy availability, defined as

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call