Abstract

Female athletes and performing artists can present with low energy availability (LEA) from either unintentional (eg, inadvertent undereating) or intentional (eg, eating disorder [ED]) methods. Whereas LEA and ED risk have been examined independently, few researchers have examined them simultaneously. Awareness of LEA with or without ED risk may provide clinicians with innovative prevention and intervention strategies. To examine LEA with or without ED risk (eg, eating attitudes, pathogenic behaviors) in female collegiate athletes and performing artists and compare sport type and LEA with the overall ED risk. Cross-sectional study. Free living in sport-specific settings. A total of 121 collegiate female athletes and performing artists (age = 19.8 ± 2.0 years, height = 168.9 ± 7.7 cm, mass = 63.6 ± 9.3 kg) participating in equestrian (n = 28), soccer (n = 20), beach volleyball (n = 18), softball (n = 17), volleyball (n = 12), and ballet (n = 26). Anthropometric measurements (height, mass, body composition), resting metabolic rate, energy intake, total daily energy expenditure, exercise energy expenditure, Eating Disorder Inventory-3 (EDI-3), and EDI-3 Symptom Checklist were assessed. Chi-square analysis was used to examine differences between LEA and sport type, LEA and ED risk, ED risk and sport type, and pathogenic behaviors and sport type. Most (81%, n = 98) female athletes and performing artists displayed LEA and differences between LEA and sport type (\(\def\upalpha{\unicode[Times]{x3B1}}\)\(\def\upbeta{\unicode[Times]{x3B2}}\)\(\def\upgamma{\unicode[Times]{x3B3}}\)\(\def\updelta{\unicode[Times]{x3B4}}\)\(\def\upvarepsilon{\unicode[Times]{x3B5}}\)\(\def\upzeta{\unicode[Times]{x3B6}}\)\(\def\upeta{\unicode[Times]{x3B7}}\)\(\def\uptheta{\unicode[Times]{x3B8}}\)\(\def\upiota{\unicode[Times]{x3B9}}\)\(\def\upkappa{\unicode[Times]{x3BA}}\)\(\def\uplambda{\unicode[Times]{x3BB}}\)\(\def\upmu{\unicode[Times]{x3BC}}\)\(\def\upnu{\unicode[Times]{x3BD}}\)\(\def\upxi{\unicode[Times]{x3BE}}\)\(\def\upomicron{\unicode[Times]{x3BF}}\)\(\def\uppi{\unicode[Times]{x3C0}}\)\(\def\uprho{\unicode[Times]{x3C1}}\)\(\def\upsigma{\unicode[Times]{x3C3}}\)\(\def\uptau{\unicode[Times]{x3C4}}\)\(\def\upupsilon{\unicode[Times]{x3C5}}\)\(\def\upphi{\unicode[Times]{x3C6}}\)\(\def\upchi{\unicode[Times]{x3C7}}\)\(\def\uppsy{\unicode[Times]{x3C8}}\)\(\def\upomega{\unicode[Times]{x3C9}}\)\(\def\bialpha{\boldsymbol{\alpha}}\)\(\def\bibeta{\boldsymbol{\beta}}\)\(\def\bigamma{\boldsymbol{\gamma}}\)\(\def\bidelta{\boldsymbol{\delta}}\)\(\def\bivarepsilon{\boldsymbol{\varepsilon}}\)\(\def\bizeta{\boldsymbol{\zeta}}\)\(\def\bieta{\boldsymbol{\eta}}\)\(\def\bitheta{\boldsymbol{\theta}}\)\(\def\biiota{\boldsymbol{\iota}}\)\(\def\bikappa{\boldsymbol{\kappa}}\)\(\def\bilambda{\boldsymbol{\lambda}}\)\(\def\bimu{\boldsymbol{\mu}}\)\(\def\binu{\boldsymbol{\nu}}\)\(\def\bixi{\boldsymbol{\xi}}\)\(\def\biomicron{\boldsymbol{\micron}}\)\(\def\bipi{\boldsymbol{\pi}}\)\(\def\birho{\boldsymbol{\rho}}\)\(\def\bisigma{\boldsymbol{\sigma}}\)\(\def\bitau{\boldsymbol{\tau}}\)\(\def\biupsilon{\boldsymbol{\upsilon}}\)\(\def\biphi{\boldsymbol{\phi}}\)\(\def\bichi{\boldsymbol{\chi}}\)\(\def\bipsy{\boldsymbol{\psy}}\)\(\def\biomega{\boldsymbol{\omega}}\)\(\def\bupalpha{\bf{\alpha}}\)\(\def\bupbeta{\bf{\beta}}\)\(\def\bupgamma{\bf{\gamma}}\)\(\def\bupdelta{\bf{\delta}}\)\(\def\bupvarepsilon{\bf{\varepsilon}}\)\(\def\bupzeta{\bf{\zeta}}\)\(\def\bupeta{\bf{\eta}}\)\(\def\buptheta{\bf{\theta}}\)\(\def\bupiota{\bf{\iota}}\)\(\def\bupkappa{\bf{\kappa}}\)\(\def\buplambda{\bf{\lambda}}\)\(\def\bupmu{\bf{\mu}}\)\(\def\bupnu{\bf{\nu}}\)\(\def\bupxi{\bf{\xi}}\)\(\def\bupomicron{\bf{\micron}}\)\(\def\buppi{\bf{\pi}}\)\(\def\buprho{\bf{\rho}}\)\(\def\bupsigma{\bf{\sigma}}\)\(\def\buptau{\bf{\tau}}\)\(\def\bupupsilon{\bf{\upsilon}}\)\(\def\bupphi{\bf{\phi}}\)\(\def\bupchi{\bf{\chi}}\)\(\def\buppsy{\bf{\psy}}\)\(\def\bupomega{\bf{\omega}}\)\(\def\bGamma{\bf{\Gamma}}\)\(\def\bDelta{\bf{\Delta}}\)\(\def\bTheta{\bf{\Theta}}\)\(\def\bLambda{\bf{\Lambda}}\)\(\def\bXi{\bf{\Xi}}\)\(\def\bPi{\bf{\Pi}}\)\(\def\bSigma{\bf{\Sigma}}\)\(\def\bPhi{\bf{\Phi}}\)\(\def\bPsi{\bf{\Psi}}\)\(\def\bOmega{\bf{\Omega}}\)\({\rm{\chi }}_5^2\) = 43.8, P < .001). The majority (76.0%, n = 92) presented with an ED risk, but the ED risk did not differ by sport type (P = .94). The EDI-3 Symptom Checklist revealed that 61.2% (n = 74) engaged in pathogenic behaviors, with dieting being the most common (51.2%, n = 62). Most (76.0%, n = 92) displayed LEA with an ED risk. No differences were found in LEA by ED risk and sport type. Softball players reported the most LEA with an ED risk (82.4%, n = 14), followed by ballet dancers (76%, n = 19). Our results suggested that a large proportion of collegiate female athletes and performing artists were at risk for LEA with an ED risk, thus warranting education, identification, prevention, and intervention strategies relative to fueling for performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call