Abstract

AbstractI present here a method of generating a distribution of initial water elevation by employing the adjoint equation and finite element methods. A shallow‐water equation is employed to simulate flow behavior. The adjoint equation method is utilized to obtain a distribution of initial water elevation for the observed water elevation. The finite element method, using the stabilized bubble function element, is used for spatial discretization, and the Crank–Nicolson method is used for temporal discretizations. In addition to a method for optimally assimilating water elevation, a method is presented for determining adjoint boundary conditions. An examination using the observation data including noise data is also carried out. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call