Abstract

We have synthesized dilute magnetic semiconductor (DMS) thin films of CdMnTe and ZnMnSe using the ion beam technique. High doses of Mn ions (∼2–5×1016/cm 2) were implanted into single crystal CdTe and into ZnSe epilayers on GaAs, forming subsurface layers of Cdl.xMnxTe and Znl-xMnxSe alloys, respectively, with x∼0.15–0.22. Fluorescence extended x-ray absorption fine structure (EXAFS) measurements on these materials reveal that the Mn atoms in the CdMnTe and ZnMnSe layers, both as-implanted and annealed, have local environments similar to their corresponding bulk-grown DMS alloys. While the anion-cation distances (Ra-c) in the annealed samples are equivalent to those in the corresponding bulk-grown DMS, the Ra-c in the asimplanted samples are slightly larger (∼0.01Å) than those in the bulk-grown DMS. This is most likely due to the implantation damage in the as-implanted materials. Our results on the Ra-c of the ion beam synthesized layers deviate significantly from Vegard's law, but are consistent with the bimodal distribution model. The EXAFS results are corroborated with results from ion beam analysis and Raman spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call