Abstract

Methods for obtaining exact and approximate solutions of the evolution of quantum-mechanical problems are discussed. The cyclic evolution of quantum systems described by time-periodic Hamiltonians is analyzed. A class of time-periodic Hamiltonians is constructed in the close analytical form. The corresponding cyclic solutions are calculated. Time-dependent Hamiltonians are generated whose expectation values calculated with cyclic solutions are time independent. It is shown that the expectation values of the spin projection calculated with the same cyclic solutions, as well as the probability density of finding a particle at a given space-time point, are also time independent. Therefore, the approach can be used to simulate quantum dynamic potential wells with the particle localization effect. Nonadiabatic geometric phases are expressed in terms of the cyclic solutions. Exactly solvable time-dependent problems are used to construct a universal set of gates for quantum computers. A method for obtaining entanglement operators is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.