Abstract

AbstractThe thermal stability and degradation behavior of a series of nine different exactly alternating silphenylene‐siloxane polymers which contained methyl, vinyl, hydrido, 3,3,3‐trifluoropropyl, and tridecafluoro‐1,1,2,2‐tetrahydrooctyl side groups, or their combinations, were investigated by dynamic and isothermal gravimetric analyses in air and in nitrogen. Two distinctly different mechanisms were observed in these atmospheres: a complex multi‐step weight loss process in air and a single‐step process in nitrogen. In nitrogen all polymers produced black, insoluble, highly stable degradation residues which were characterized by high carbon content. In contrast, in air the nonfluorine containing polymers degraded to pure silica, while the fluoroalkyl substituted polymers may have formed fluorosilicates of unspecified structures. There appears to be no significant molecular weight effect on the thermal stability of these polymers, at least not above an Mw value of about 35,000. Isothermal investigations indicate that 300°C in air and 350°C in nitrogen may be possible upper use temperatures for the methylvinyl substituted, exactly alternating silphenylene–siloxane polymers for extended periods of time. A strong thermostabilizing effect by vinyl side groups on the degradation behavior of these polymers was established. The extent of stabilization depends on the content of vinyl units, but it can already be clearly seen at the 5 mol % vinyl level, and it increases exponentially with increasing vinyl concentration. In contrast to this behavior, by comparison with the parent all‐methyl substituted, exactly alternating silphenylene–siloxane polymers, the hydrido and fluroalkyl side groups reduce overall polymer thermal stability in terms of the degradation onset temperature, the temperature for 50% weight loss, and the amount of degradation residue. The presence of these groups also extends the later stages of the degradation processes to higher temperatures. Based on these and previous results, an order of stability is proposed as a function of the type of the substituent side groups for the thermal degradation of these polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.