Abstract

ABSTRACT2‐Hydroxy‐3‐(4‐nitrophenoxy)propyl methacrylate (HNPPMA) monomer was synthesized. The poly(HNPPMA) was prepared by free radical polymerization (FRP) method. The characterization of poly(HNPPMA) was carried out using FT‐IR, NMR, differential scanning calorimetry, and GPC techniques. The thermal stability and degradation behavior of this polymer have been studied by using thermogravimetry (TG), GC‐MS, NMR, and FT‐IR. The results were in comparison to poly[2‐hydroxy‐3‐(1‐naphtyloxy)propyl methacrylate] sample with α‐naphtyloxy side group prepared by the same method in the our previous study. The effect of thermal activation on non‐isothermal decomposition kinetics of poly(HNPPMA) was investigated using thermogravimetric analysis according to Flynn‐Wall‐Ozawa method. The dielectric measurements of poly(HNPPMA) and doped with europium(III)chloride (EuCI3) were investigated by impedance analyzer technique in range of 10–4000 Hz frequency by depending on the alternating current conductivities. The mode of thermal degradation including formation of the main products of poly(HNPPMA) degraded from ambient temperature to 500 °C was identified. S°, the cold ring fraction (CRF) was collected from room temperature to 500 °C. The structure of the degradation products has also been studied depending on the GC‐MS analysis. The thermal degradation mechanism for poly(HNPPMA) with radical degradation processes thought to dominate at high temperature was proposed based on GC/MS, NMR, FT‐IR, and taking into account the new products and differences in stability. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43925.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.