Abstract
This is a continuation of developing mutation theory in exact WKB analysis using the framework of cluster algebras. Here we study the Schrodinger equation on a compact Riemann surface with turning points of simple-pole type. We show that the orbifold triangulations by Felikson, Shapiro, and Tumarkin provide a natural framework of describing the mutation of Stokes graphs, where simple poles correspond to orbifold points. We then show that under the mutation of Stokes graphs around simple poles the Voros symbols mutate as the variables of generalized cluster algebras introduced by Chekhov and Shapiro.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have