Abstract

This study leverages the powerful unified method to address the complex challenges presented by fractional differential equations in mathematical physics. Our primary focus is on deriving novel exact solutions for the time-fractional thin-film ferroelectric material equation. Fractional derivatives in this study are defined using the conformable fractional derivative, ensuring a robust mathematical foundation. Through the unified method, we derive solitary wave solutions for the governing equation, which models wave dynamics in these materials and holds significance in various fields of physics and hydrodynamics. The behavior of these solutions is analyzed using the conformable derivative, shedding light on their dynamic properties. Analytical solutions, formulated in hyperbolic, periodic, and trigonometric forms, reveal dark, bright, periodic, and solitary wave solitons, illustrating the impact of fractional derivatives on these physical phenomena. This paper highlights the capability of the unified method in tackling complex issues associated with fractional differential equations, expanding both mathematical techniques and our understanding of nonlinear physical phenomena.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.