Abstract

Abstract Mathieu’s equation originally emerged while studying vibrations on an elliptical drumhead, so naturally, being a linear second-order ordinary differential equation with a Cosine periodic potential, it has many useful applications in theoretical and experimental physics. Unfortunately, there exists no closed-form analytic solution of Mathieu’s equation, so that future studies and applications of this equation, as evidenced in the literature, are inevitably fraught by numerical approximation schemes and nonlinear analysis of so-called stability charts. The present research work, therefore, avoids such analyses by making exceptional use of Laurent series expansions and four-term recurrence relations. Unexpectedly, this approach has uncovered two linearly independent solutions to Mathie’s equation, each of which is in closed form. An exact and general analytic solution to Mathieu’s equation, then, follows in the usual way of an appropriate linear combination of the two linearly independent solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.