Abstract

We show that the structure of the Lie symmetry algebra of a system of n linear second-order ordinary differential equations with constant coefficients depends on at most n-1 parameters. The tools used are Jordan canonical forms and appropriate scaling transformations. We put our approach to test by presenting a simple proof of the fact that the dimension of the symmetry Lie algebra of a system of two linear second-order ordinary differential with constant coefficients is either 7, 8 or 15. Also, we establish for the first time that the dimension of the symmetry Lie algebra of a system of three linear second-order ordinary differential equations with constant coefficients is 10, 12, 13 or 24.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.