Abstract

There exist a number of typical and interesting systems and/or models, which possess three-generator Lie-algebraic structure, in atomic physics, quantum optics, nuclear physics and laser physics. The well-known fact that all simple 3-generator algebras are either isomorphic to the algebra sl (2, C) or to one of its real forms enables us to treat these time-dependent quantum systems in a unified way. By making use of both the Lewis-Riesenfeld invariant theory and the invariant-related unitary transformation formulation, the present paper obtains exact solutions of the time-dependent Schrodinger equations governing various three-generator Lie-algebraic quantum systems. For some quantum systems whose time-dependent Hamiltonians have no quasialgebraic structures, it is shown that the exact solutions can also be obtained by working in a sub-Hilbert-space corresponding to a particular eigenvalue of the conserved generator (i.e., the time-independent invariant that commutes with the time-dependent Hamiltonian). The topological property of geometric phase factors and its adiabatic limit in time-dependent systems is briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.