Abstract
There exist a number of typical and interesting systems and/or models, which possess three-generator Lie-algebraic structure, in atomic physics, quantum optics, nuclear physics and laser physics. The well-known fact that all simple 3-generator algebras are either isomorphic to the algebra sl (2, C) or to one of its real forms enables us to treat these time-dependent quantum systems in a unified way. By making use of both the Lewis-Riesenfeld invariant theory and the invariant-related unitary transformation formulation, the present paper obtains exact solutions of the time-dependent Schrodinger equations governing various three-generator Lie-algebraic quantum systems. For some quantum systems whose time-dependent Hamiltonians have no quasialgebraic structures, it is shown that the exact solutions can also be obtained by working in a sub-Hilbert-space corresponding to a particular eigenvalue of the conserved generator (i.e., the time-independent invariant that commutes with the time-dependent Hamiltonian). The topological property of geometric phase factors and its adiabatic limit in time-dependent systems is briefly discussed.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have