Abstract

It is shown that the extended one-dimensional dimer Bose–Hubbard model with multi-body interactions can be solved exactly by using the algebraic Bethe ansatz mainly due to the site-permutation S2 symmetry. The solution for the model with up to three-particle hopping and three-body on-site interaction is explicitly shown. As an example of the application, lower part of the excitation energy levels and the ground-state entanglement measure of the standard Bose–Hubbard Hamiltonian with the attractive two-body on-site interaction plus the three-body on-site interaction for 100 bosons with variation of the control parameter are calculated by using the exact solution. It is shown that the attractive three-body on-site interaction reinforces the critical point entanglement of the system, which may be helpful for design of an optical lattice for ultracold atoms or a tuneable superconducting quantum interference device with maximal entanglement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.