Abstract

We present an exact analytical solution of the fundamental system of quasi-one-dimensional spin-1 bosons with infinite delta repulsion. The eigenfunctions are constructed from the wave functions of noninteracting spinless fermions, based on Girardeau's Fermi-Bose mapping. We show that the spinor bosons behave like a compound of noninteracting spinless fermions and noninteracting distinguishable spins. This duality is especially reflected in the spin densities and the energy spectrum. We find that the momentum distribution of the eigenstates depends on the symmetry of the spin function. Furthermore, we discuss the splitting of the ground state multiplet in the regime of large but finite repulsion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.