Abstract

In this work we consider fixation of an allele in a population. Fixation is key to understanding the way long-term evolutionary change occurs at the gene and molecular levels. Two basic aspects of fixation are: (i) the chance it occurs and (ii) the way the gene frequency progresses to fixation. We present exact results for both aspects of fixation for the Wright–Fisher model. We give the exact fixation probability for some different schemes of frequency-dependent selection. We also give the corresponding exact stochastic difference equation that generates frequency trajectories which ultimately fix. Exactness of the results means selection need not be weak. There are possible applications of this work to data analysis, modelling, and tests of approximations. The methodology employed illustrates that knowledge of the fixation probability, for all initial frequencies, fully characterises the dynamics of the Wright–Fisher model. The stochastic equations for fixing trajectories allow insight into the way fixation occurs. They provide the alternative picture that fixation is driven by the injection of one carrier of the fixing allele into the population each generation. The stochastic equations allow explicit calculation of some properties of fixing trajectories and their efficient simulation. The results are illustrated and tested with simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.