Abstract

We consider the statistics of the areas enclosed by domain boundaries ("hulls") during the curvature-driven coarsening dynamics of a two-dimensional nonconserved scalar field from a disordered initial state. We show that the number of hulls per unit area that enclose an area greater than A has, for large time t, the scaling form Nh(A,t)=2c/(A+lambdat), demonstrating the validity of dynamical scaling in this system, where c=1/8pisquare root 3 is a universal constant. Domain areas (regions of aligned spins) have a similar distribution up to very large values of A/lambdat. Identical forms are obtained for coarsening from a critical initial state, but with c replaced by c/2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.