Abstract

Motivated by fundamental issues in nonequilibrium statistical mechanics, we study the venerable susceptible-infected-susceptible (SIS) model of disease spreading in an idealized, simple setting. Using Monte Carlo and analytic techniques, we consider a fully connected, unidirectional network of odd number of nodes, each having an equal number of in- and out-degrees. With the standard SIS dynamics at high infection rates, this system settles into an active nonequilibrium steady state. We find the exact probability distribution and explore its implications for nonequilibrium statistical mechanics, such as the presence of persistent probability currents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.