Abstract

The topological properties of a network directly impact the flow of information through a system. For example, in natural populations, the network of inter-individual contacts affects the rate of flow of infectious disease. Similarly, in evolutionary systems, the topological properties of the underlying population structure affect the rate of flow of genetic information, and thus affect selective pressure. One commonly employed method for quantifying the influence of the population structure on selective pressure is through the analysis of takeover time. In this study, we reformulate takeover time analysis in terms of the well-known Susceptible-Infectious-Susceptible (SIS) model of disease spread. We then adapt an analytical technique, called the pair approximation, to provide a general model of takeover dynamics. We compare the results of this model to simulation data on a total of six regular population structures and discuss the strengths and limitations of the approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.