Abstract

The exact renormalization group (RG) method initiated by Wilson and further developed by Polchinski is used to study the shear flow model proposed by Avellaneda and Majda as a simplified model for the diffusive transport of a passive scalar by a turbulent velocity field. It is shown that this exact RG method is capable of recovering all the scaling regimes as the spectral parameters of velocity statistics vary, found by Avellaneda and Majda in their rigorous study of this model. This gives further confidence that the RG method, if implemented in the right way instead of using drastic truncations as in the Yakhot-Orszag's approximate RG scheme, does give the correct prediction for the large scale behaviors of solutions of stochastic partial differential equations (PDE). We also derive the analog of the "large eddy simulation" models when a finite amount of small scales are eliminated from the problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.