Abstract

The exact relationship between the Rao–Wilton–Glisson (RWG) method of moments (MoM) and the locally corrected Nystrom (LCN) method for the mixed-potential (MP) electric field integral equation (EFIE) is presented as an extension to our work where we established analogous exact relationship for solving the EFIE in its vector-potential (VP) form. It is shown that in order to achieve one such relationship for the MP EFIE, the first- and zeroth-order LCN methods must be, respectively, used for the discretization of the VP and scalar-potential terms of the MP EFIE. The resulting numerical scheme is a point-based RWG MoM discretization of the MP EFIE via the Nystrom method. Due to the MP formulation of the EFIE, the proposed method establishes notably higher accuracy compared to either RWG MoM or LCN discretizations of the EFIE in the VP form. The increased accuracy is attributed to the analytical cancellation of the line charge contributions in the MP formulation as opposed to numerical cancellation inherent in the VP formulation of the EFIE. The detailed study and explanations of the above cancellations is presented along with their impact on the accuracy of the respective schemes for both canonical and realistic scattering targets at different frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call