Abstract

Using an exact Chebyshev wave packet method, initial state-specified (upsilon(i)=0, j(i)=0,2) integral cross-sections and rate constants are obtained for the title reaction on the latest ab initio potential energy surface. Reaction probabilities up to J=29 are dependent on the reactant rotation and show mild oscillations superimposed on a broad background. Due to a barrier in the entrance channel, the cross sections increase with energy with clear thresholds and the rate constants vary with temperature in the Arrhenius form. The calculated canonical rate constant is in good agreement with the experimental measurements. Our results also indicate that the quasiclassical trajectory method underestimates the rate due to the neglect of tunneling, while the quantum statistical approach overestimates because of the short lifetime of the reaction intermediate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.