Abstract

Nonseparable quadratic integer programming problems have extensive applications in real world and have received considerable attentions. In this paper, a new exact algorithm is presented for nonseparable concave quadratic integer programming problems. This algorithm is of a branch and bound frame, where the lower bound is obtained by solving a quadratic convex programming problem and the branches are partitioned via a special domain cut technique by which the optimality gap is reduced gradually. The optimal solution to the primal problem can be found in a finite number of iterations. Numerical results are also reported to illustrate the efficiency of our algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.