Abstract

This paper develops a decompose procedure for finding the optimal solution of convex and concave Quadratic Programming (QP) problems together with general Non-linear Programming (NLP) problems. The paper also develops a sophisticated computer technique corresponding to the author's algorithm using programming language MATHEMATICA. As for auxiliary by making comparison, the author introduces a computer-oriented technique of the traditional Karush-Kuhn-Tucker (KKT) method and Lagrange method for solving NLP problems. He then modify the Sander's algorithm and develop a new computational technique to evaluate the performance of the Sander's algorithm for solving NLP problems. The author observe that the technique avoids some certain numerical difficulties in NLP and QP. He illustrates a number of numerical examples to demonstrate his method and the modified algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.