Abstract

Abstract Thermal unit commitment (UC) is a nonlinear combinatorial optimization problem that minimizes total operating costs while considering system load balance, on/off restrictions and other constraints. Successfully solving the thermal UC problem contributes to a more reliable power system and reduces thermal costs. This paper presents an exact mixed-integer quadratic programming (EMIQP) method for large-scale thermal UC problems. EMIQP revolutionizes the landscape by seamlessly translating the intricate nonlinear combinatorial optimization problem of UC into an exact mixed-integer quadratic formulation. This approach also elegantly reimagines on/off constraints as mixed-integer linear equations, employing both the sum and respective approaches. Our case studies unequivocally demonstrate the exceptional prowess of the EMIQP method, consistently securing the global optimum. Moreover, the mathematical-based EMIQP method produces identical results at each run, which is extremely important for UC in the real world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call