Abstract

We consider the problem of discriminating, on the basis of random “training” samples, between two independent multivariate normal populations, Np(μ, Σ1) and Np(μ, Σ2), which have a common mean vector μ and distinct covariance matrices Σ1 and Σ2. Using the theory of Bessel functions of the second kind of matrix argument developed by Herz (1955, Ann. Math.61, 474–523), we derive stochastic representations for the exact distributions of the “plug-in” quadratic discriminant functions for classifying a newly obtained observation. These stochastic representations involve only chi-squared and F-distributions, hence we obtain an efficient method for simulating the discriminant functions and estimating the corresponding probabilities of misclassification. For some special values of p, Σ1 and Σ2 we obtain explicit formulas and inequalities for the probabilities of misclassification. We apply these results to data given by Stocks (1933, Ann. Eugen.5, 1–55) in a biometric investigation of the physical characteristics of twins, and to data provided by Rencher (1995, “Methods of Multivariate Analysis,” Wiley, New York) in a study of the relationship between football helmet design and neck injuries. For each application we estimate the exact probabilities of misclassification, and in the case of Stocks' data we make extensive comparisons with previously published estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.