Abstract

We study a new quintic discrete nonlinear Schrödinger (QDNLS) equation which reduces naturally to an interesting symmetric difference equation of the form φ n+1 + φ n−1 = F( φ n ). Integrability of the symmetric mapping is checked by singularity confinement criteria and growth properties. Some new exact localized solutions for integrable cases are presented for certain sets of parameters. Although these exact localized solutions represent only a small subset of the large variety of possible solutions admitted by the QDNLS equation, those solutions presented here are the first example of exact localized solutions of the QDNLS equation. We also find chaotic behavior for certain parameters of nonintegrable case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.