Abstract

Despite the apparent need to study reversible reactions between molecules confined to a two-dimensional space such as the cell membrane, exact Green’s functions for this case have not been reported. Here we present exact analytical Green’s functions for a Brownian particle reversibly reacting with a fixed reaction center in a finite two-dimensional circular region with reflecting or absorbing boundaries, considering either a spherically symmetric initial distribution or a particle that is initially bound. We show that Green’s function can be used to predict the effect of measurement uncertainties on the outcome of single-particle/molecule-tracking experiments in which molecular interactions are investigated. Hence, we bridge the gap between previously known solutions in one dimension (Agmon 1984 J. Chem. Phys. 81 2811) and three dimensions (Kim and Shin 1999 Phys. Rev. Lett. 82 1578), and provide an example of how the knowledge of Green’s function can be used to predict experimentally accessible quantities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.