Abstract
This paper is concerned with the free vibration analysis of open circular cylindrical shells with either the two straight edges or the two curved edges simply supported and the remaining two edges supported by arbitrary classical boundary conditions. Based on the Donnell-Mushtari-Vlasov thin shell theory, an analytical solution of the traveling wave form along the simply supported edges and the modal wave form along the remaining two edges is obtained. With such a unidirectional traveling wave form solution, the method of the reverberation-ray matrix is introduced to derive the equation of natural frequencies of the shell with different classical boundary conditions. The exact solutions for natural frequencies of the open circular cylindrical shell are obtained with the employment of a golden section search algorithm. The calculation results are compared with those obtained by the finite element method and the methods in the available literature. The influence of length, thickness, radius, included angle, and the boundary conditions of the open circular cylindrical shell on the natural frequencies is investigated. The exact calculation results can be used as benchmark values for researchers to check their numerical methods and for engineers to design structures with thin shell components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.