Abstract
In this paper, the dynamic modeling theory of a spatial flexible beam, which undergoes large overall motion and nonlinear deformation, is investigated. As we know, in spacecraft and space station, there are a lot of flexible appendices so the dynamic modeling of a flexible beam is essential. Yet the existing models, in our opinion, lack several important coupling terms. This paper supplies these important coupling terms. Based on the new approach of deformation of fully geometrically nonlinear beam model developed,the finite element method is used for the system discretization and the coupling dynamic equations of flexible beam are obtained by Lagrange’s equations. The complete expression of stiffness matrix and all coupling terms are included in the dynamic equations. The second order coupling terms between rigid large overall motion, arc length stretch, lateral flexible deformation kinematics and torsional deformation terms are included in the present exact coupling model to expand the theory of one-order coupling model. The dynamic modeling method in this paper is of theoretical significance and has reference value for the rigid-flexible coupling system dynamic investigation .
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have