Abstract

We report on finite-size exact-diagonalization calculations in a Hilbert space defined by the continuum-model flat moiré bands of magic angle twisted bilayer graphene. For moiré band filling 3>|ν|>2, where superconductivity is strongest, we obtain evidence that the ground state is a spin ferromagnet. Near |ν|=3, we find Chern insulator ground states that have spontaneous spin, valley, and sublattice polarization, and demonstrate that the anisotropy energy in this order-parameter space is strongly band-filling-factor dependent. We emphasize that inclusion of the remote band self-energy is necessary for a reliable description of magic angle twisted bilayer graphene flat band correlations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call