Abstract
We present a theory of superconductivity in twisted bilayer graphene in which attraction is generated between electrons on the same honeycomb sublattice when the system is close to a sublattice polarization instability. The resulting Cooper pairs are spin-polarized valley singlets. Because the sublattice polarizability is mainly contributed by interband fluctuations, superconductivity occurs over a wide range of filling fraction. It is suppressed by (i)applying a sublattice polarizing field (generated by an aligned BN substrate) or (ii)changing moiré band filling to favor valley polarization. The enhanced intrasublattice attraction close to sublattice polarization instability is analogous to enhanced like-spin attraction in liquid ^{3}He near the melting curve and the enhanced valley-singlet repulsion close to valley-polarization instabilities is analogous to enhanced spin-singlet repulsion in metals that are close to a ferromagnetic instability. We comment on the relationship between our pseudospin paramagnon model and the rich phenomenology of superconductivity in twisted bilayer and multilayer graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.