Abstract

We present a theory of superconductivity in twisted bilayer graphene in which attraction is generated between electrons on the same honeycomb sublattice when the system is close to a sublattice polarization instability. The resulting Cooper pairs are spin-polarized valley singlets. Because the sublattice polarizability is mainly contributed by interband fluctuations, superconductivity occurs over a wide range of filling fraction. It is suppressed by (i)applying a sublattice polarizing field (generated by an aligned BN substrate) or (ii)changing moiré band filling to favor valley polarization. The enhanced intrasublattice attraction close to sublattice polarization instability is analogous to enhanced like-spin attraction in liquid ^{3}He near the melting curve and the enhanced valley-singlet repulsion close to valley-polarization instabilities is analogous to enhanced spin-singlet repulsion in metals that are close to a ferromagnetic instability. We comment on the relationship between our pseudospin paramagnon model and the rich phenomenology of superconductivity in twisted bilayer and multilayer graphene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call