Abstract

We consider a simple integrable model of a spin chain exhibiting the Magnetoelectric Effect (MEE). Starting from the periodic S=1/2 XXZ-chain with Dzyaloshinskii-Moriya terms, which we consider as a local electric polarization in the spirit of the Katsura-Nagaosa-Baladsky (KNB) mechanism, we perform the mapping onto the conventional XXZ-chain with twisted boundary conditions. Using the techniques of Quantum Transfer Matrix (QTM) and Non-Linear Integral Equations (NLIE) we obtain the magnetization, electric polarization and magnetoelectric tensor as functions of magnetic and electric field for arbitrary temperatures. We investigate these dependencies as well as the thermal behavior of the above mentioned physical quantities, especially in the low-temperature regime. We found several regimes of polarization. Adjusting the magnetic field one can switch the system from one regime to another. The features of the critical properties connected with the MEE are also illustrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.