Abstract
We have analysed in detail the geometry of the I-WP infinite periodic minimal surface, discovered by Alan Schoen in the 1960's. An exact parametrisation has been found, using the local Weierstrass equations for the surface, involving modified hyperelliptic integrals. We have used rapidly converging integration techniques to calculate the surface to volume ratio of this surface, and found that it differs from the value conjectured by Anderson. Further, the family of isometric minimal surfaces related to the I-WP surface has been found to exhibit a novel sequence of structures; viz. repeated formation of the I-WP surface itself On analyse en detail la geometrie de la surface minimale infinie et periodique I-WP, decouverte par Alan Schoen dans les annees 60. En utilisant les equations de Weierstrass locales pour la surface, on obtient une parametrisation exacte a l'aide d'integrales hyperelliptiques modifiees. A l'aide de methodes d'integrations numeriques rapides, le rapport surface/volume de cette surface est calcule; il differe de la valeur conjecturee par Anderson. De plus, on trouve que la famille de surfaces minimales isometriques reliees a la surface I-WP possede une nouvelle suite de structures qui reproduisent la surface I-WP elle-meme
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.