Abstract

We calculate the entropy and cooling rate of the antiferromagnetic spin-1/2 XXZ chain under an adiabatic demagnetization process using the quantum transfer-matrix technique and non-linear integral equations. The limiting case of the Ising chain (corresponding to infinitely large anisotropy) is presented for comparison. Our exact results for the Heisenberg chain are used as a crosscheck for the numerical exact diagonalization as well as Quantum Monte Carlo simulations and allow us to benchmark the numerical methods. Close to field-induced quantum phase transitions we observe a large magnetocaloric effect. Furthermore, we verify universal low-temperature power laws in the cooling rate and entropy, in particular linear scaling of entropy with temperature T in the gapless Luttinger-liquid state and scaling as \sqrt{T} at field-induced transitions to gapped phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.