Abstract

By partitioning the total stresses in a damaged composite into either mechanical and residual stresses or into initial and perturbation stresses, it was possible to derive several exact results for the energy release rate due to crack growth. These general results automatically include the effects of residual stresses, traction-loaded cracks, and imperfect interfaces. The exact energy release rate results were expressed in terms of exact solutions to reduced composite stress analysis problems. By considering the common situation where the initial stresses are known exactly, but the perturbation stresses are only known approximately, it was possible to derive rigorous upper and lower bounds to the energy release rate for crack growth. Some of the new fracture mechanics equations were applied to crack closure calculations, to fiber fracture and interfacial debonding in the fragmentation test, and to microcracking in composite laminates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call