Abstract

Abstract We study the problem of testing hypotheses on the parameters of one- and two-factor stochastic volatility models (SV), allowing for the possible presence of non-regularities such as singular moment conditions and unidentified parameters, which can lead to non-standard asymptotic distributions. We focus on the development of simulation-based exact procedures–whose level can be controlled in finite samples–as well as on large-sample procedures which remain valid under non-regular conditions. We consider Wald-type, score-type and likelihood-ratio-type tests based on a simple moment estimator, which can be easily simulated. We also propose a C ( α ) -type test which is very easy to implement and exhibits relatively good size and power properties. Besides usual linear restrictions on the SV model coefficients, the problems studied include testing homoskedasticity against a SV alternative (which involves singular moment conditions under the null hypothesis) and testing the null hypothesis of one factor driving the dynamics of the volatility process against two factors (which raises identification difficulties). Three ways of implementing the tests based on alternative statistics are compared: asymptotic critical values (when available), a local Monte Carlo (or parametric bootstrap) test procedure, and a maximized Monte Carlo (MMC) procedure. The size and power properties of the proposed tests are examined in a simulation experiment. The results indicate that the C ( α ) -based tests (built upon the simple moment estimator available in closed form) have good size and power properties for regular hypotheses, while Monte Carlo tests are much more reliable than those based on asymptotic critical values. Further, in cases where the parametric bootstrap appears to fail (for example, in the presence of identification problems), the MMC procedure easily controls the level of the tests. Moreover, MMC-based tests exhibit relatively good power performance despite the conservative feature of the procedure. Finally, we present an application to a time series of returns on the Standard and Poor’s Composite Price Index.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.