Abstract
Statistical inference (estimation and testing) for the stochastic volatility (SV) model Taylor (1982, 1986) is challenging, especially likelihood-based methods which are difficult to apply due to the presence of latent variables. The existing methods are either computationally costly and/or inefficient. In this paper, we propose computationally simple estimators for the SV model, which are at the same time highly efficient. The proposed class of estimators uses a small number of moment equations derived from an ARMA representation associated with the SV model, along with the possibility of using “winsorization” to improve stability and efficiency. We call these ARMA-SV estimators. Closed-form expressions for ARMA-SV estimators are obtained, and no numerical optimization procedure or choice of initial parameter values is required. The asymptotic distributional theory of the proposed estimators is studied. Due to their computational simplicity, the ARMA-SV estimators allow one to make reliable – even exact – simulation-based inference, through the application of Monte Carlo (MC) test or bootstrap methods. We compare them in a simulation experiment with a wide array of alternative estimation methods, in terms of bias, root mean square error and computation time. In addition to confirming the enormous computational advantage of the proposed estimators, the results show that ARMA-SV estimators match (or exceed) alternative estimators in terms of precision, including the widely used Bayesian estimator. The proposed methods are applied to daily observations on the returns for three major stock prices (Coca-Cola, Walmart, Ford) and the S&P Composite Price Index (2000–2017). The results confirm the presence of stochastic volatility with strong persistence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.