Abstract

A stochastic hybrid system contains a collection of interacting discrete and continuous components, subject to random behaviour. The formal verification of a stochastic hybrid system often comprises a method for the generation of a finite-state probabilistic system which either represents exactly the behaviour of the stochastic hybrid system, or which approximates conservatively its behaviour. We extend such abstraction-based formal verification of stochastic hybrid systems in two ways. Firstly, we generalise previous results by showing how bisimulation-based abstractions of non-probabilistic hybrid automata can be lifted to the setting of probabilistic hybrid automata, a subclass of stochastic hybrid systems in which probabilistic choices can be made with respect to finite, discrete alternatives only. Secondly, we consider the problem of obtaining approximate abstractions for discrete-time stochastic systems in which there are continuous probabilistic choices with regard to the slopes of certain system variables. We restrict our attention to the subclass of such systems in which the approximate abstraction of such a system, obtained using the previously developed techniques of Fraenzle et al., results in a probabilistic rectangular hybrid automaton, from which in turn a finite-state probabilistic system can be obtained. We illustrate this technique with an example, using the probabilistic model checking tool PRISM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.