Abstract

Sandwich structures are widely used in many industrial applications, due to the attractive combination of a lightweight and strong mechanical properties. This compromise is realized thanks to the presence of different parts in the composite material, namely the skins and possibly core reinforcements or thin-walled core structure which are both thin/slender and stiff relative to the other parts, namely the homogeneous core material, if any. The buckling phenomenon thus becomes mainly responsible for the final collapse of such sandwiches. In this paper, classical sandwich beam-columns (with homogeneous core materials) are considered and elastic buckling analyses are performed in order to derive the critical values and the associated bifurcation modes under various loadings (compression and pure bending). The two faces are represented by Euler–Bernoulli beams, whereas the core material is considered as a 2D continuous solid. A set of partial differential equations is first obtained from a general bifurcation analysis, using the above assumptions. Original closed-form analytical solutions of the critical loading and mode of a sandwich beam-column are then derived for various loading conditions. Finally, the proposed analytical formulae are validated using 2D linearized buckling finite element computations, and parametric analyses are performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.