Abstract

The paper presents a novel comprehensive exact analytical solution for modeling linear shear-horizontal (SH) wave propagation in an isotropic inhomogeneous layer made of functionally graded material, using local Heun functions. The layer is a composite of two materials with varying properties represented by spatial variations following the square of the sine function. The Voigt–Kelvin model is used to account for material losses. The study focuses on SH waves incident at a specific angle and employs the wave splitting technique to analyze forward and backward waves, facilitating the computation of reflection and transmission coefficients at any point in the inhomogeneous structure. The proposed solution utilizes the periodic nature of material functions and employs the Floquet–Bloch theory to derive an exact analytical solution. This approach is particularly suited for cases where SH waves encounter locally periodic functionally graded material. A Riccati equation-based verification is conducted to compare the frequency-dependent modulus of the reflection coefficient obtained from the analytical solution with numerically solved results. The presented work provides a comprehensive and versatile analytical solution for studying linear SH wave propagation in locally inhomogeneous isotropic layers, contributing to the theoretical understanding of elastic wave fields and practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call