Abstract

Frequently orthopedic surgeries require mechanical drilling processes especially for inserted biodegradable screws or removing small bone lesions. However mechanical drilling techniques induce large number of forces as well as have substantially lower material removal rates resulting in prolong healing times. This study focuses on analyzing the impact of quasi-continuous laser drilling on the bone's surface as well as optimizing the drilling conditions to achieve high material removal rates. An ex-vivo study was conducted on the cortical region of desiccated bovine bone. The laser-based drilling on the bovine bine specimens was conducted in an argon atmosphere using a number of laser pulses ranging from 100 to 15,000. The morphology of the resulting laser drilled cavities was characterized using Energy dispersive Spectroscopy (EDS) and the width and depth of the drills were measured using a laser based Profilometer. Data from the profilometer was then used to calculate material removal rates. At last, the material removal rates and laser processing parameters were used to develop a statistical model based on Design of Experiments (DOE) approach to predict the optimal laser drilling parameters. The main outcome of the study based on the laser drilled cavities was that as the number of laser pulses increases, the depth and diameter of the cavities progressively increase. However, the material removal rates revealed a decrease in value at a point between 4000 and 6000 laser pulses. Therefore, based on the sequential sum of square method, a polynomial curve to the 6th power was fit to the experimental data. The predicted equation of the curve had a p-value of 0.0010 indicating statistical significance and predicted the maximum material removal rate to be 32.10 mm3/s with 95%CI [28.3,35.9] which was associated with the optimum number of laser pulses of 4820. Whereas the experimental verification of bone drilling with 4820 laser pulses yielded a material removal rate of 33.37 mm3/s. Therefore, this study found that the carbonized layer formed due to laser processing had a decreased carbon content and helped in increasing the material removal rate. Then using the experimental data, a polymetric equation to the sixth power was developed which predicted the optimized material removal rate to occur at 4820 pulses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.