Abstract

Plasma processes are crucial for manufacturing integrated circuits. To maintain device yield and equipment throughput, plasma faults should be tightly monitored and diagnosed. A new ex-situ model to diagnose plasma processing equipment was presented. The model was constructed by combining wavelet, scanning electron microscope, ex-situ measurement of etching profile, and neural network. The diagnosis technique was applied to a tungsten etching process, conducted in a SF 6 helicon plasma. The wavelet was used to characterize detailed variations of plasma-etched surface. Three types of diagnosis models were constructed, trained with the vertical, horizontal, and diagonal wavelet components. For comparison, a conventional model was built by using the estimated profile data. Compared to the conventional model, the wavelet-based models, particularly the horizontal model, demonstrated a much improved diagnosis. The presented method can be effectively used to construct an improved diagnosis model for any plasma-processed surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.