Abstract

Dataset shift is a major challenge in the non-stationary environments wherein the input data distribution may change over time. In a time-series data, detecting the dataset shift point, where the distribution changes its properties is of utmost interest. Dataset shift exists in a broad range of real-world systems. In such systems, there is a need for continuous monitoring of the process behavior and tracking the state of the shift so as to decide about initiating adaptive corrections in a timely manner. This paper presents a novel method to detect the shift-point based on a two-stage structure involving Exponentially Weighted Moving Average (EWMA) chart and Kolmogorov-Smirnov test, which substantially reduces type-I error rate. The algorithm is suitable to be run in real-time. Its performance is evaluated through experiments using synthetic and real-world datasets. Results show effectiveness of the proposed approach in terms of decreased type-I error and tolerable increase in detection time delay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.