Abstract
Dataset shift is a major challenge in the non-stationary environments wherein the input data distribution may change over time. Detecting the dataset shift point in the time-series data, where the distribution of time-series changes its properties, is of utmost interest. Dataset shift exists in a broad range of real-world systems. In such systems, there is a need for continuous monitoring of the process behavior and tracking the state of the shift so as to decide about initiating adaptive corrections in a timely manner. This paper presents an algorithm to detect the shift-point in a non-stationary time-series data. The proposed method detects the shift-point based on an exponentially weighted moving average (EWMA) control chart for auto-correlated observations. This algorithm is suitable to be run in real-time and monitors the data to detect the dataset shift. Its performance is evaluated through experiments using synthetic and real-world datasets. Results show that all the dataset-shifts are detected without the delay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.