Abstract

Many volcanic areas around the World are densely populated and urbanized. For instance , Mount Etna (Italy) is home to approximately one million people, despite being the most active volcano in Europe. Mapping both the physical threat and the exposure and vulnerability of people and material properties to volcanic hazards can help local authorities to guide decisions about where to locate a priori critical infrastructures (e.g. hospitals, power plants, railroads, etc.) and human settlements and to devise for existing locations and facilities appropriate mitigation measures. We here present the application of Parallel Genetic Algorithms for optimizing earth barriers construction by morphological evolution, to divert a case study lava flow that is simulated by the numerical Cellular Automata model Sciara-fv2 at Mt Etna volcano (Sicily, Italy). The devised area regards Rifugio Sapienza, a touristic facility located near the summit of the volcano, where the methodology was applied for the optimization of the position, orientation and extension of an earth barrier built to protect the zone. The study has produced extremely positive results, providing insights and scenarios for the area representing, to our knowledge, the first application of morphological evolution for lava flow mitigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call