Abstract
Quantum information technology is mainly based on quantum entanglement. As an important coherent superposition state, the coherence of quantum entanglement source is easily affected by environment and becomes fragile, which will lead to the failure of the quantum information processing. Thus, it is critical to reveal the evolutions of quantum entanglement source under different noisy environments and different noisy channels. Firstly, we experimentally prepare a high-fidelity two-bit entangled state by several technical methods. The fidelity observed for the state prepared in our experiment is 0.993 and the signal-to-noise ratio can reach up to 299. Then, we simulate the bit-flip noise and phase-shift noise (collective and non-collective) using the all-optical experimental setup. Finally, based on the entanglement qubit state, we experimentally study the evolutions of entanglement characteristic under different noisy environments and the single, double and mixed noisy channels. The experimental results show that for the same type of noise, the entanglement properties disappear fast when entangled qubit passes through dual channel noisy environment. The upper bounds of noise intensity to destroy the entanglement property are 0.25 and 0.26 for the single bit-flip noise and phase-shift noisy channels, respectively. The comparison between the two different kinds of noisy environments shows that the entanglement properties disappear fast when entangled bit passes through non-collective environment. The upper bounds of noise intensity are 0.08 and 0.14 for non-collective bit-flip and phase-shift noise to destroy the entanglement property, while the noise intensities are 0.14 and 0.23 for collective bit-flip and phase-shift noise, respectively. For different kinds of noises, the results show that bit-flip noise is more likely to destroy the entanglement properties than the phase-shift. Our results have great significance for the theoretical and experimental studies of entanglement decoherence and have important application value for quantum information processing technology based on the nonlinear optical system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.